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Abstract A simple “protochiron” is used to systematically develop and describe
molecular helices, especially on the cubic and diamond lattices.
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1 Introduction

The 1975 Nobel Prize for Chemistry was awarded to Sir John W. Cornforth (for
his work on the stereochemistry of enzyme-catalyzed reactions), and to Vladimir
Prelog, for his research into the stereochemistry of organic molecules and reactions.
A few months before the announcement of the Nobel Prize, on July 19, 1975, V.
Prelog had written in his preface to the book on Chemical Applications of Graph
Theory: “This book should help to bridge the gap (or even abyss) between chemical
and mathematical literature. . . The editor of this first comprehensive monograph on
chemical applications of graph theory is himself a pioneer and promoter of reaction
graphs. He has been fortunate to find for all chapters authors who have made original
contributions to the subject and who are still actively involved in it” [1]. In his Nobel
Lecture entitled “Chirality in Chemistry” presented on December 12, 1975, Vladimir
Prelog stated: [2] “The simplest chiral object of the three-dimensional perceptual space
is . . . the chiral three-dimensional simplex, the irregular tetrahedron.” Later, in 1982
in a paper co-authored with Helmchen, Prelog pointed out that four points can be
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connected in a helical arrangement (as in gauche n-butane) or a tripodal arrangement
(as in a trialkylphosphine with three different alkyl groups); the former structure leads
to different conformations, and the latter to different configurations [3].

1.1 Protochirons

In two previous papers, protochirons were described as the simplest three-dimensional
physical objects able to give rise to enantiomeric structures, which are not superim-
posable on their mirror image [4,5]. For mathematicians the irregular tetrahedron with
six edges all having different lengths qualifies as a protochiron, but for chemists and
other scientists interested in real-world nanostructures composed of atoms connected
by covalent bonds, there exist two common types of (organic chemical) protochirons,
such as discussed by Prelog and Helmchen [3], there called “stereogenic units”. In the
language of graph theory, atoms are modeled by graph vertices or points, and covalent
bonds by graph edges or lines. Different atoms or different types of covalent bonds
may be modeled by vertices or bonds with weight or color.

1.1.1 Type-1 protochiron

The first type of the two extant types of protochirons is the familiar asymmetric
sp3-hybridized atom with four chirally distinct substituents. That is, this protochi-
ron corresponds to a total of five points with different “weights”, represented by a
tetrahedral assembly of four differently colored lines emerging from one point—the
idea going back to Van’t Hoff and Le Bel in 1875. According to the Cahn–Ingold–
Prelog rules, the configurations based on precedence rules of the four substituents are
designated as R and S [6]. Extension of such tetrahedral protochirons (ignoring color)
to a whole network leads to the diamond network if next-neighbor bonds have the
staggered conformation.

1.1.2 Type-2 protochiron

The second type of protochiron (which will be the main tool of the present paper)
may also be derived from tetrahedra and most simply involves only three non-planar
but sequentially intersecting lines, i.e. a sequence of four points: three non-collinear
points determine two lines and a plane; the fourth out-of-plane point adds the third
line. Estrada’s variable parameter v allows a 3-path graph embedded into Euclidean
3-space to manifest a continuous variation of curvilinear torsion [7]. If one simplifies
the picture by asking that all bond angles and lengths be equal, one may illustrate this
type of protochiron for any bond angle α such that 0 < α < 180◦. Figure 1 presents the
cases for α = 60◦ and α = 90◦ (the latter case will be called an ortho-3-path). A third
example is the carbon skeleton of n-butane which can adopt exactly three staggered
conformations, two of which correspond to the two enantiomers of gauche n-butane,
while the third conformer is the achiral anti (transoid) n-butane [8,9]. Bond angles
are α = 109.5◦, as in the ideal diamond network. We call these last chiral conformers
diamond-3-paths, and denote them as R and S (boldface and not italicized, in order
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to differentiate them from the former designations): in a Newman projection of the
3-path viewed along its central edge, if the smallest rotation of the closer terminal edge
till it eclipses the more remote terminal edge is clockwise, then the stereo-descriptor
is R, and if the rotation is counterclockwise it is S.

Another familiar network is the simple cubic net. It also gives rise to a pair of
enantiomeric chiral 3-paths, with bond angles of 90◦, as seen in Fig. 1, which can
also have either R or S stereo-descriptors. Figure 2 presents the protochirons for the
three possible diamond-3-paths with their descriptors, and Fig. 3 for the six possible
ortho-3-paths with their designations.

The type-2 protochiron involving four points, i.e. involving a 3-path, might be
viewed as formally simpler than type-1 protochirons involving five points. In a corre-
sponding chemical context, asymmetrically substituted atoms with tetrahedral geom-
etry are less simple than chiral 3-paths involving covalent bonds, somewhat as the
ground state of hydrogen peroxide.

o

oo

o

o

o o

o

Fig. 1 Type-2 S protochirons (full lines) with bond angles of 60◦ (a “tight-tetrahedron” protochiron) and
90◦ (ortho-3-path on the cubic network)

Z SR

Fig. 2 The left-most structure corresponds to 2,2,3,3-tetramethylbutane in staggered conformation. The
next three are the Z, R, and S protochirons (diamond-3-paths)

Fig. 3 The six ortho-3-paths with their designations
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A third type of (simple) protochiron entails just three lines radiating from a single
point, whence if non-planar leads to chiral structures (much as for the type-1 pro-
tochirons), and may be used to describe chiral phosphines or amines. The “invisible”
unshared electron pair replaces the fourth tetrahedral ligand.

Again in a chemical context, Prelog and Helmchen noted that somewhat arbitrary
carbon-based molecular structures may be factored into type-1 and type-2 protochi-
rons [3]. Asymmetrically substituted atoms with tetrahedral geometry are probably
“sturdier” than chiral 3-paths in that the type-1 protochirons, in not so readily rearrang-
ing to their mirror image. Still the mathematical description of 3-paths is especially
simple, and they do describe different conformations manifested by polymethine (or
polyethylene) chains. But other chemical realizations as more rigid structures have
been noted [10,11]. Another quite rigid realization is as diamondoid chain molecules
(comprised from fused adamantanes)—when we identify these molecules in terms
of their dual-net model (with sites in the centers of adamantanes and edges between
these central sites corresponding to face-sharing adamantane units). Thence here these
4-vertex 3-paths might be used to describe different helices—indeed Prelog and Helm-
chen termed this protochiron the “helical stereogenic unit” [3].

Chiral objects can be obtained from 3-path protochirons by three operations: con-
catenation (association of two 3-paths such that two vertices merge into one), assembly
(association of two 3-paths such that two edges merge into one), and overlap (asso-
ciation such that the last two edges of one 3-path merge with the first two edges of a
second 3-path) [2]. Helices result by suitable repeated overlap operations. The helix is
described by the stereo-descriptors corresponding to each of the central edges added
sequentially by the overlap. Thus, among the six possible staggered conformers of
n-pentane, two are helical, namely RR and SS, and they are formed by overlap of
two diamond-3-paths having the corresponding stereo-descriptors. The present note
discusses in detail helices formed from the three types of 3-paths illustrated in Fig. 2,
for the diamond network (α = 109.5◦). But first, some briefer attention is paid to
helices formed from the three orthopaths R, S, and Z of the cubic network (α = 90◦)
illustrated in Fig. 3, and also helices based on the tetrahedral protochiron with α = 60◦.
In principle, with angles smaller than, or equal to 60◦ one can obtain an infinity of
helices as shown by two examples in Fig. 4.

Fig. 4 Stereo-views of helices
with small bond angles leading
to triangles or stellated
pentagons when viewed along
the helix axis
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Fig. 5 Enantiomeric tight-tetrahedron helices

1.2 Helices based on tight-tetrahedron-3-paths

If several tetrahedra are assembled such that two tetrahedra share a vertex, two tetra-
hedron edges involving this vertex are aligned along a fixed line, and the other edges
are parallel, then a simple helix may be obtained as indicated in Fig. 5. Viewed along
the helix axis, the overlapping lines give rise to an equilateral triangle.

An interesting helical face-sharing tetrahedron chain, called tetrahelix by
Buckminster Fuller, has been analyzed in detail by Zheng et al. [12]. Its twist is irra-
tional and never repeats itself.

1.3 Helices based on ortho-3-paths

We present in Fig. 6 the simplest enantiomeric helices formed from repeated overlap
of the R or S rectangular-3-paths. It can be seen in Fig. 7 that the repeating unit of
such helixes has a period (pitch) of three, and that in a side-view along the axis of
the helix, one can see a triangular arrangement of the overlapping bonds in the simple
cubic network.

It is easy to assign integer coordinates to points on a cubic network by assuming an
interatomic distance of one arbitrary unit along the x , y, and z axes. Table 1 presents
coordinates for two enantiomeric helices on the cubic network shown in Fig. 7.

One can observe from Table 1 that the sequences of each coordinate repeat with
a period of three, after which the pattern with each coordinate increased by 1 is
repeated, to continue this trend. In the above example, the z coordinates are the same
for the two enantiomers, but the x and y coordinates are permuted. In Figs. 4 and 5 the
corresponding triangles of overlapping edges viewed alongside the helix axis share
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Fig. 6 Stereo-views of an all-R helix (top) and all-S helix (bottom) on the cubic network

Fig. 7 Stereo-view of a cubic
RRRRRRR helix involving
points 1 through 8
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Table 1 Coordinates for 8
helical vertices of enantiomeric
helices (all-R and all-S) in the
simple cubic net

Vertex RRRRRRR SSSSSSS

x y z x y z

1 0 0 0 0 0 0
2 0 0 1 0 0 1
3 0 1 1 1 0 1
4 1 1 1 1 1 1
5 1 1 2 1 1 2
6 1 2 2 2 1 2
7 2 2 2 2 2 2
8 2 2 3 2 2 3
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an edge for two enantiomeric helices. This results in the two enantiomeric helices
differing in point coordinates for every third point, but sharing the two other points.

1.4 Helices based on diamond-3-paths

It is also easy to assign integer coordinate to points on the diamond net, as shown by
Balaban et al. [13]. This entails a smallest interatomic distance of

√
3. A triamantane

carbon skeleton with such coordinates is shown in Fig. 8. The origin of the coordinate
system is at the center of the left-most adamantane subunit. It can be easily observed
that this center is equi-distant from the two pairs of vertices with coordinates (±2, 0,
0), (0, 0, ±2), and (0, ±2, 0).

Table 2 displays integer coordinates for a pair of enantiomeric helices with nine
points on the diamond network, one of which is presented in Fig. 9. Looking at Table 2
one sees that the x-coordinates are the same for both enantiomers. On looking along
the helix axis, one can observe that the overlapping bonds form a square, in agreement
with the period of four for all three coordinates. The enantiomeric helices are seen to
share an edge of the square formed by the apparently overlapping bonds. The helix
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Add to existing coordinates,
according to eight directions:

Fig. 8 Triamantane skeleton with integer coordinates for its carbon atoms. Colors characterize the y
coordinate. Following the direction of an arrow, the algebraic increments of coordinates are indicated in
red. Underlined digits have negative sign
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Table 2 Coordinates for helical
points in enantiomeric helices on
the diamond net

Vertex RRRRRRR SSSSSSS

x y z x y z

1 −4 0 2 −4 0 2
2 −3 1 3 −3 −1 1
3 −2 0 4 −2 −2 2
4 −1 −1 3 −1 −1 3
5 0 0 2 0 0 2
6 1 1 3 1 −1 1
7 2 0 4 2 −2 2
8 3 −1 3 3 −1 3
9 4 0 2 4 0 2
10 5 1 3 5 −1 1
11 6 0 4 6 −2 2
12 7 −1 3 7 −1 3
13 8 0 2 8 0 2
14 9 1 3 9 −1 1
15 10 0 4 10 −2 2
16 11 −1 3 11 −1 3

Fig. 9 Stereo-view of a helix on
the diamond network (red
spheres)

11

2 233
4 4 55

667 7

8 8 99

Fig. 10 Two enantiomeric helices (all-S in red, and all-R in black) on the diamond lattice

axis is oriented along the x axis, as seen by the continually increasing x coordinate
(by 1) for each successive step of the helix. In agreement with the observation that the
helix in Fig. 9 forms a square when viewed along its axis, one can see that the y and
z-coordinates in Table 2 repeat themselves with a period of 4.

As will be seen in Table 2 and Fig. 10, integer coordinates for all-R and all-S helices
on the diamond lattice in a particular direction have the pitch (period) of 4, and for
the y and z coordinates they provide a continuous repetition, whereas the x coordinate
increases steadily along natural numbers.
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Fig. 11 Stereo-view of the helix SRRSRRSRRSRRSRR on the diamond network, beginning with 1
(green) and ending with 17 (green). It forms a hexagon from overlapping bonds when viewed along the
helix axis

Table 3 Point coordinates
of the helix on the diamond
network SRRSRRSRR . . .

Vertex SRRSRRSRRS

x y z

1 −1 3 1
2 0 2 0
3 1 1 1
4 0 0 2
5 −1 1 3
6 −2 2 2
7 −3 1 1
8 −2 0 0
9 −1 −1 1
10 −2 −2 2
11 −3 −1 3
12 −4 0 2
13 −5 −1 1
14 −4 −2 0
15 −3 −3 1
16 −4 −4 0
17 −5 −3 2

It is also possible to have helices with the repeating sequence formed by more than
one diamond-3-path, as we saw in Fig. 9, for instance with repeating sequence SRS
as presented in Fig. 11. The coordinates for the 17 points of Fig. 11 are displayed in
Table 3. It can be seen that the z-coordinates become repeated with a period of 6, in
agreement with the fact that the helix appears as a hexagon formed by overlapping
bonds when viewed along the axis of the helix.

1.5 Dihedral angles for 3-paths

The three lines of a 3-path define two intersecting planes. One can see in Fig. 12 the
four red points and the three red lines of the ortho-3-path, and also the three broken
red lines that with the full red lines define an irregular tetrahedron. It is easy to see that
in this case the dihedral angle is a right angle, because the two planes are isosceles
triangles (half-faces of the cube).
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Fig. 12 Stereo-view of an
ortho-3-path (full red lines)
on a cube
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Fig. 13 Stereo-views of a
tight-tetrahedron-3-path (upper
part) and a diamond-3-path
(lower part)
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For the 3-path on a regular tetrahedron, the upper part of Fig. 13 indicates similarly
to Fig. 12 by four red points and three red lines the tight-tetrahedron-3-path. Black
broken lines complete the regular tetrahedron. The lower part of Fig. 13 illustrates
similarly the red-colored diamond-3-path, but in this case the broken black lines and
the full red lines define an irregular tetrahedron. Interestingly, for both 3-paths in
Fig. 13, the dihedral angle is the same (arcsin3−1/2 = 70.5◦).

2 Paths in the diamond net

We follow Balaban et al. [13] to describe a method of assigning integer coordinates to
the points on the diamond net. Let A = (1, 1, 1), B = (1, −1, −1), D = (−1, 1, −1) and
E = (−1,−1, 1) be the four basic vectors. For convenience let us also use a redundant
notation a = −A = (−1, −1, −1), b = −B = (−1, 1, 1), d = −D = (1,−1, 1), and
e = −E = (1, 1,−1). We have deliberately avoided the use of the letter C to reduce
the confusion between the capital and small letters. The alternating sums of the form
α1 − α2 + α3 − α4 + · · · + (−1)n−1αn where αi ’s are from the set {A, B, D, E} for
n > 0, give the coordinates of the points of the diamond network. Let r1, r2, . . . , rn be
the points of a directed path P with distinct edges in the diamond network. The letter
sequence of vectors r2 − r1, r3 − r2, . . . , rn − rn−1, form an alternating sequence of
capital and small letters. We remark that the geometry of the diamond net does not
allow repetition of the same letter (no distinction between capital and small letters is
made in this remark). For instance none of AA, aA, Aa, or aa are allowed and similar
comments hold for the other three letters. The path P is made of n − 3 overlapping
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3-paths corresponding to the sets {r2−r1, r3−r2, r4−r3}, {r3−r2, r4−r3, r5−r4}, . . .,
respectively. Each of these 3-paths has a unique assignment of a protochiron S, R or
Z. These protochirons form a sequence S1, S2, . . ., Sn−3 providing a standard type
of code for the path P. Thus it is easy to see that given a path we can construct a
unique code. Clearly the code depends on the first four points, r1, r2, r3, r4 of the path
P. Conversely, given the first four points a path P and the code of the path P we can
evaluate the coordinates of the rest of the points of the path P. To achieve this goal we
first list all possible directed paths of length 3 with the tail end of the path at the origin.
This list essentially captures all paths of length 3 since any directed 3-path r1, r2, r3, r4
in the diamond network can be translated so that r1 coincides with the origin. In the
diamond network only half of these paths, 36 in number, appear at the origin. These
paths are denoted by a string of three letters with the first and the last from {A, B, D,
E} and the middle from {a, b, d, e}. The remaining paths are denoted by a string of
three letters with the first and last from {a, b, d, e} and the middle from {A, B, D, E}.
In both types of 3-paths the same letter is not repeated. We will use the word “3-path
designations” or “3pd” for these strings. In the next example we consider a 3-path and
it’s 3pd. The overlap operation can now be explained as follows: a 3pd, say “xyz”
can be combined with another succeeding 3pd “pqr” if and only if y = p and z = q. The
result is essentially the standard code used in polymer chemistry for conformations of
polymethine chains—see, e.g., Flory’s books [10,11].

Example 2.1 Consider the directed 3-path with vertices (0, 0, 0), (1, 1, 1), (0, 2, 2),
and (−1, 3, 1). Here the vector (1, 1, 1)− (0, 0, 0) = (1, 1, 1) corresponds to the
directed edge A, (0, 2, 2)− (1, 1, 1) = (−1, 1, 1) corresponds to the directed edge b, and
(−1, 3, 1)− (0, 2, 2) = (−1, 1, −1) corresponds to the directed edge D. The 3pd of
this 3-path is AbD. Conversely, given AbD, the same 3pd, the letter A corresponds
to the directed edge with tail end at (0, 0, 0) and head at (1, 1, 1). Thus the first two
points of the directed path are (0, 0, 0) and (1, 1, 1). The letter b corresponds to the
vector (−1, 1, 1) and the addition of this vector to (1, 1, 1) results in the third point
(0, 2, 2) of the path. The vector (−1, 1, −1) corresponds to the last letter D and adding
(0, 2, 2) and (−1, 1, −1) gives the fourth point (−1, 3, 1).

2.1 The 3-path designations

All of the required 3-paths can be constructed by adding the vectors {A, B, D, E} and
{a, b, d, e} alternatively while ensuring the same letter is not immediately repeated.
There are a total of 72 different paths. Half of these 3pd’s begin with a capital letter
and can be realized at the origin in the diamond net, while the rest of the paths, whose
3pds begin with small letter are not realizable in the same diamond net centered at the
origin. We divide the 3pds into three classes based on the type of protochiron each
3-path designation represents.

We may note that every 3pd beginning with a capital letter has a corresponding 3pd
beginning with a small letter and is obtained by reversing the order and interchanging
the capital letters and small letters. Given a path, we first find the sequence of letters
corresponding to the directed edges along the path, then using a sliding window of
three letters, and the list of 3pds we have derived, we arrive at the protochiron code
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List of 3pds

R-type AbE BaD DaE EaB eBa dAb eAd bAe
AdB BdE DbA EbD bDa eDb aBd dBe
AeD BeA DeB EdA dEa aEb bEd aDe

S-type AbD BaE DaB EaD dBa eAb bAd dAe
AdE BdA DbE EbA eDa aDb eBd aBe
AeB BeD DeA EdB bEa dEb aEd bDe

Z-type AbA BaB DaD EaE aBa bAb dAd eAe
AdA BdB DbD EbE aDa bDb dBd eBe
AeA BeB DeD EdE eAe bEb dEd eDe

of the path. For instance if the sequence of letters is AbAdBeAdB then the first three
letters AbA corresponds to a 3pd of Z-type, sliding to the next window bAd gives a 3pd
of S-type, and next AdB gives an R-type and so on leading to the code ZSRRRRR.
Next we have some examples.

Example 2.2 The first three columns contain the coordinates of the points of a path.
The next three columns contain the coordinates of the vector obtained by subtracting
the coordinates of the points (first three columns) in upper row from the coordinates
of the point immediately following lower row. Next column contains the label of the
directed edge. The last column shows the protochiron of the sliding window of the
row.

4 0 2
3 1 3 1 1 1 A
2 0 4 1 1 1 d
1 1 3 1 1 1 B R
0 0 2 1 1 1 e R
1 1 3 1 1 1 A R
2 0 4 1 1 1 d R
3 1 3 1 1 1 B R
4 0 2 1 1 1 e R

Example 2.3 In this example we chose a self intersecting path with distinct edges to
evaluate the code. The edges are distinct if no consecutive points are repeated.

1 1 1
0 0 0 1 1 1 b
1 1 1 1 1 1 A
2 0 2 1 1 1 d S
1 1 3 1 1 1 E S
0 2 2 1 1 1 a R
1 1 1 1 1 1 D S
0 0 0 1 1 1 e R
1 1 1 1 1 1 D Z
2 0 2 1 1 1 a S
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Next we consider examples illustrating the use of the list of 3pds in evaluating the
coordinates of the path, given the first four points of the path and the code. Here we are
given the first four rows and the last column containing the code. We have the first two
letters of the second 3pd and the code letter (R, S, or Z). From this information we can
find the third letter of the second 3pd by consulting the list of the 3pds corresponding
to the code (R, S or Z) and this uniquely determines the second 3pd. Adding the
coordinates of the vector corresponding to the new letter to the coordinates of the
fourth point yields the fifth point. Next we move on to evaluating the third 3pd and so
on. We can repeat this process as long as the code is available. We may note that we
do not really need the first four points of the path, as the first three will suffice. The
fourth point can be evaluated since the first code letter is known. We will summarize
these observations in the following Lemma 2.4, which is stated without proof.

Lemma 2.4 Given a code S0, S1, . . . of a path P in the diamond net and the coordi-
nates of four points ri+1, ri+2, ri+3, ri+4 corresponding to any single Si , the rest of
the points of the path P can be determined uniquely.

Example 2.5 Let us reconstruct the points of the path in Example 2.3 given the first
four points and the code SSRSRZS.

1 −1 −1
0 0 0 −1 1 1 b
1 1 1 1 1 1 A
2 0 2 1 −1 1 d S

The second protochiron is S and first two letters are A and d. There is exactly one 3pd
namely “AdE” in the list for S with Ad as the first two letters. Thus E is the fourth
directed edge and E = (−1, −1, 1). With this information our table grows a little.

1 −1 −1
0 0 0 −1 1 1 b
1 1 1 1 1 1 A
2 0 2 1 −1 1 d S

−1 −1 1 E S

Addition of (−1, −1, 1) and (2, 0, 2) yields the fifth point (1, −1, 3). The next
protochiron is R and d,E are the first two letters pointing to the unique 3pd namely
dEa and the directed edge a = (−1, −1, −1). Again the addition of (1, −1, 3) and
(−1, −1, −1) yields the sixth point.

1 −1 −1
0 0 0 −1 1 1 b
1 1 1 1 1 1 A
2 0 2 1 −1 1 d S
1 −1 3 −1 −1 1 E S
0 −2 2 −1 −1 −1 a R

This process can be continued as long as the code is available.
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Example 2.6 Let (−1, −1, 1), (0, −2, 2), (1, −1, 3) and (2, 0, 2) be the first four points
of a path with code SRZSSRZZSZR. Find the rest of the points on this path. Note
that we can solve this problem with just (−1, −1, 1), (0, −2, 2), (1, −1, 3), the first
three points.

−1 −1 1
0 −2 2 1 −1 1 d
1 −1 3 1 1 1 A
2 0 2 1 1 −1 e S
1 1 1 −1 1 −1 D R
2 2 0 1 1 −1 e Z
3 3 1 1 1 1 A S
2 4 2 −1 1 1 b S
1 3 3 −1 −1 1 E R
0 4 4 −1 1 1 b Z

−1 3 5 −1 −1 1 E Z
−2 2 4 −1 −1 −1 a S
−3 1 5 −1 −1 1 E Z
−4 2 6 −1 1 1 b R

2.2 The overlap operation and the De Bruijn sequences

The overlap operation is a classic combinatorial operation occurring in a problem
of practical origin: the so-called Rotating drum problem. This problem asks if it
is possible to construct a circular binary sequence of length 2n so that 2n possible
n-tuples of consecutive 0’s and 1’s arise, see [14,15] for further details. Such a circu-
lar sequence is called a De Bruijn sequence. The concepts of overlap operation and
line graph are used in the construction of De Bruijn sequences. These concepts can
be used to obtain the 3pd’s and describe how they can be combined by the overlap
operation. We now briefly outline the ideas. First let us recall that a directed line graph
L(G) of a directed graph G is a graph whose vertex set is the set of directed arcs of G
and two vertices v = (x, y) and u = (a, b) of L(G) form an arc of L(G) if and only
if the head of the directed arc v of G is same as the tail of the directed arc u of G, i.e.,
y = a.

We may first explore the diamond network or the hexagonal network in two dimen-
sions. Let X = (1/2,

√
3/2), Y = (1/2,−√

3/2), Z = (0,−1), x = −X, y = −Y,
and z = −Z and the alternating sums of the form α1 −α2 +α3 −α4 +· · ·+(−1)n−1αn

where αi ‘s are from the set {X, Y, Z} for n > 0, give the coordinates of the points
of the hexagonal network. Let G be the directed graph with the vertex set V (G) =
{X, Y, Z, x, y, z} and the arc set A(G) = {(X, y),(y, X),(X, z),(z, X),(Y, x),(x, Y),
(Y, z),(z, Y),(Z, x),(x, Z), (Z, y),(y, Z)}. In 2 dimensions there are two chiral pro-
tochirons, namely R and S:Xy, Yz, Zx, xY, yZ, zX are of R-type and Yx, Zy, Xz,
yX, zY, xZ are of S-type. We may note that these protochirons correspond to the arcs
of G. The protochirons are exactly the vertices of the line graph L(G) and the arcs of
L(G) show the possible combinations of protochirons.
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Now, for the three-dimensional diamond lattice let the set of eight vectors {A, B,
D, E, a, b, d, e}, be the vertex set of a directed graph H . Given two vertices x and y
there is a directed arc from x to y if and only if (i) x and y do not represent the same
letter, (ii) exactly one of x and y is a small letter. The vertices of L(L(H)), i.e., the
line graph of the line graph of H , are 72 in number and are exactly the 3pd’s listed in
Sect. 2.1. The acrs of L(L(H)) show the possible overlap operations.

3 Periodic paths and periodic codes in the diamond network

Many results in this section can be generalized to arbitrary networks, however in this
section we focus exclusively on the diamond network. Presumably a periodic path
should give rise to a periodic code. In the diamond network the converse is also true.
We remark to the reader that this result is not immediate since each code letter (R,
S and Z) corresponds to 24 distinctly positioned (non-congruent) 3-path designations
(3pds). Thus it is necessary to provide precise definitions of periodic path and periodic
code to aid in the proof of this claim.

Definition 3.1 An infinite path with vertices r0, r1, . . ., is periodic if for some positive
integer n, for τ = (rn−r0), one has rn+1 = r1+τ, rn+2 = r2+τ, . . ., r2n−1 = rn−1+τ,
r2n = r0+2τ, r2n+1 = r1+2τ, . . ., r3n−1 = rn−1+2τ, r3n = r0+3τ, r3n+1 = r1+3τ,
r3n+2 = r2 + 3(rn − r0), . . . and so on. In a more compact form the sequence of rt is
periodic if rt = rs + q(rn − r0), t = qn + s with 0 ≤ s < n, q > 0. The smallest
integer n for which the sequence is periodic is the period of the path with the periodic
block r0, r1, . . ., rn .

Definition 3.2 The code S0, S1, . . ., of an infinite path is periodic if for some positive
integer m, Sm = S0, Sm+1 = S1, . . ., S2m−1 = Sm−1, S2m = S0, S2m+1 = S1, and so
on. In a compact form if St = Ss , where t = qm + s with 0 ≤ s < m, q > 0. The
smallest integer m for which the sequence is periodic is the period of the code with
the periodic block S0, S1, . . ., Sm−1.

Let P be an infinite path with points r0, r1, . . ., and code S0, S1, . . ., . It is intuitively
clear that a periodic infinite path must have a periodic code. It should be remarked
that in general the period of a periodic path is not the same as the period of its code
and the code itself does not readily yield the translation vector τ.

Proposition 3.3 Every infinite periodic path has a periodic code.

Proof Let P be an infinite path r0, r1, . . . with period n. Let t be any positive integer
not less than n. Suppose t = qn + s with 0 ≤ s < n. The code St corresponds a
protochiron depending on the directed edges rt+1 − rt , rt+2 − rt+1, rt+3 − rt+2. Since
the path P is periodic we can express these four points rt , rt+1, rt+2, rt+3 in terms
of points of the periodic block: rt = rs + q (rn − r0), rt+1 = rs+1 + q (rn − r0),
rt+2 = rs+2 + q (rn − r0), and rt+3 = rs+3 + q (rn − r0). It is clear that St = Ss since
rt+1 − rt = rs+1 − rs, rt+2 − rt+1 = rs+2 − rs+1, and rt+3 − rt+2 = rs+3 − rs+2.

Proposition 3.4 Let P be an infinite path in the diamond network with points r0, r1, . . .

If the path P has a periodic code then P is a periodic path and period of the path is
not greater than 24m, where m is the period of the code.
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Proof Let S0, S1, . . ., be the periodic code of the path P with period m. Consider a
sequence C0, C1, . . . of subsequences of the points of P as follows:

C0 : r0, r1, . . .

C1 : rm, rm+1, . . .

C2 : r2m, r2m+1, . . . and in general Ct : rtm, rtm+1, . . . for t = 0, 1, 2, . . .

We note that each of the sequences C0, C1, . . . all have the same code due to the
periodicity of the original code. Translations of a path by a vector does not alter the
code, thus the following sequences all have the same code as the original path P,

D0 : (0, 0, 0), r1 − r0, r2 − r0,r3 − r0, . . .

D1 : (0, 0, 0), rm+1 − rm, rm+2 − rm, rm+3 − rm, . . .

D2 : (0, 0, 0), r2m+1 − r2m, r2m+2 − r2, r2m+3 − r2m, . . . and in general

Dt : (0, 0, 0), rtm+1 − rtm, rtm+2 − rtm, rtm+3 − rtm, . . . for t = 0, 1, 2, . . .

All of the initial 3pds given by the first four points in D0, D1, D2, . . . belong to the
same type of protochiron since they all have the same code letter. There are only 24
distinct 3pds for each of the code letters R, S and Z. Then by the Dirichlet box principle
(more commonly known as Pigeonhole principle), there must exist two non-negative
integers i and j, i < j ≤ 24 for which the initial four points in Di and Dj are identical.
Since Di and Dj have exactly the same code and the same first four points it follows
that the sequences Di and Dj are identical. Thus we have,

rjm+t − rjm = rim+t − rim for t = 1, 2, . . .

Letting A = rjm − rim, rjm+t = rim+t + A for t = 1, 2, . . . We now show that the
path corresponding to the sequence Di is periodic. Let t = q (jm − im) + s, 0 ≤ s <

(jm − im) and q > 0, then,

rjm+t = rim+t + A

= rjm+(q−1)(jm−im)+s + A

= rim+(q−1)(jm−im)+s + 2A

= rjm+s + qA.

If s = 0, then rjm+q(jm−im) = rjm + qA, and if s �= 0, rjm+q(jm−im)+s = rim+s +
(q + 1) A.

Letting µ = (jm − im), we have shown that the sequence Ci has the following
structure: rim, rim+1, rim+2, . . ., rjm,

rjm+1 = rim+1 + A, rjm+2 = rim+2 + A, . . ., rjm+µ = rjm + A

rjm+1+µ = rim+1 + 2A, rjm+2+µ = rim+2 + 2A, . . ., rjm+2µ = ajm + 2A

rjm+1+2µ = rim+1 + 3A, . . . and so on.
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Thus, we have shown that the sequence Ci is periodic with the periodic block rim,
rim+1, rim+2, . . ., rjm. Each row in the above structure shows the periodic blocks.
Now we will adjoin rim−1 to the sequence Ci and show the resulting sequence is also
periodic. First we note that rjm = rim + (rjm − rim) or rjm = rim + A. The code letter
Sim−1 and the last three points rim, rim+1, and rim+2 uniquely determine the first point
rim−1. So, we can conclude that the code letter Sim−1 and the points rim +A, rim+1+A,
rim+2 + A uniquely determine rim−1 + A. Similarly, the code letter Sjm−1 and the last
three points rjm, rjm+1, and rjm+2 uniquely determine the first point rjm−1. Because the
code is periodic the code letters of Sim−1 and S jm−1 are same and since rjm = rim +A,
rjm+1 = rim+1 + A, and rjm+2 = rim+2 + A, it follows that rjm−1 = rim−1 + A. We
may note that A = (rjm−1 − rim−1). Using the equation rjm = rim + A, we see that
rjm+µ = rjm + A = rim + 2A, rjm+2µ = rjm + 2A = rim + 3A and so on. We will add
the new element rim−1 to the first row and remove the last element rjm and add it as the
first element in the second row. Again remove the last element from the second row
and make it the first element of the third row and so on. Rewriting A as rjm−1 − rim−1
the sequence rim−1, rim, rim+1,. . ., has the following structure:

rim−1, rim, rim+1, . . ., rim+µ−1,

rjm = rim + A, rjm+1 = rim+1 + A, rjm+2 = rim+2 + A, . . ., rjm+µ−1 = rjm−1 + A

rjm+µ = rim + 2A, rjm+1+µ = rim+1 + 2A, rjm+2+µ = rim+2 + 2A, . . ., rjm+2µ−1

= rjm−1 + 2A

rjm+2µ = rjm + 3A, rjm+1+2µ = rim+1 + 3A, . . . and so on.

We can repeat this until we reach the first point. This shows that the path P is periodic
with the periodic block r0, r1, . . ., rµ, and A = (rjm−im − r0). Since µ = (j − i) m
and (j − i) ≤ 24 it follows that an infinite path P with periodic code of period m has
a period not more than 24 times the period of the periodic code. This completes the
proof of this theorem.

Remark 3.5 Theorem 3.4 says a bit more than the statement indicates. The theorem
implies that the first 3pd that appears in an infinite path with periodic code must
reappear making a periodic block. This is not a consequence of the Dirichlet box
principle. This is the consequence of Lemma 2.4.

Remark 3.6 Results from this section ensure that an infinite path with periodic code
is a periodic path. Thus if we are interested in periodic paths such as a helices then it
is enough to restrict our attention to paths with periodic codes.

4 Helices in the diamond network

Our interest is in helices in the diamond net. By a helix in a given overall direction we
understand a curve which overall proceeds along that direction while also writhing
around that direction, with the net number of writhings (signed + and − for opposite
writhings) overall diverging ever farther from 0 as one continues farther and farther
along the helix. Admittedly this characterization is somewhat ambiguous, though it
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can be made precise at least in the periodic case, as we now do. That is, attention is
limited to periodic paths infinitely extending in both directions. In Sect. 3, we have
characterized the infinite periodic paths in the diamond network: An infinite path in
the diamond network is a periodic path if and only if it has a periodic code. Thus it
is enough to search for the helices among the paths with infinite periodic codes. It
is clear that if the periodic code corresponds to a helix, then the periodic block is to
correspond to a net turning or writhing in the helix. If a path P is of period n with
periodic block ri+1, ri+2, . . . , ri+n and τ = rn − r0, then the projection of the points
of the periodic block projected onto a plane π⊥ normal to the vector τ are seen to form
a self-returning walk in π⊥. And if this walk in π⊥ makes some non-zero number of
full 360◦ turns, then the parent path corresponds to a periodic helix. In more detail,
one imagines a walk along the regular path between two sites separated by the repeat
vector τ , and this constrains the corresponding walk w⊥ projected into the normal
plane. The different steps of the projection w⊥ are in general of different lengths, and
from one step to the next step in the walk w⊥, there is often a well-defined change
of direction �ϑ , measured as + or − as the (minimum-angle) turn is in the counter-
clockwise or clockwise direction. If one of the projected steps is of length 0 (as when
the step of the unprojected path is parallel to τ ), then �ϑ = 0. If the sum of these �ϑ

over a full period (of n steps in the parent path on the diamond net) gives a non-zero
multiple of 360◦, then the path is a regular helix.

There remains an ambiguity in this definition of a (regular) helix. For if there are
steps in the path which appear as reversals in the normal plane π⊥, then there is an
ambiguity as to whether to count the turn angle as �ϑ = +180◦ or �ϑ = −180◦.
In such a circumstance, one approach is to choose both possibilities, and use both
as candidates in making separate candidate summations for the net turn angle for an
n-path. The different possible candidate answers for the net turn angle correspond to
different results obtainable upon infinitesimal distortions from the ideal with “well-
signed” angles that deviate but slightly from strict reversals. Now granted several such
net sums for the turn angle, if there is no net sum = 0, then the result is still a (regular)
helix. If there is a net sum = 0, but the average of these net sums is not = 0, then we
might call the periodic path a regular quasi-helix—in the sense that most infinitesimal
distortions lead to something which is a helix. And if the average of these sums
is 0, then the result is in some sense quasi-a helical. Again, if there is only one
candidate sum, the decision is clear, being a helix or non-helix respectively as the sum
is �= 0 or = 0.

Many mathematics books identify helices as curves on a surface such as a cylinder
and such as to have constant value for the pitch (which is the rate of change of the
candidate curve in the overall direction τ of the helix). But these here are viewed
just as examples of helices, of which we consider a more general type. If helices are
restricted to have constant local pitch, then this is a strong constraint on the subset of
helices which occur in the diamond network—and indeed there are only a few possible
choices for the translation vector τ which allow such constant pitch helices. But more
especially most of the molecular helices found in chemistry and molecular biology are
not such constant-pitch helices—if the pitches are computed for the individual bonds
along the backbone of the polymeric structures. The definition of a periodic helix may
be used to search for such helices in the diamond net—as indicated in Sect. 5.2.
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4.1 Testing for helicity

Given a periodic code we may test if it corresponds to a helix. First we evaluate the
points of a periodic path corresponding to the code by starting at the origin and choose
a 3pd corresponding to the first code letter from the list of 24 possible choices of
3pd’s. The period of the path is found by extending the path until the first 3pd (of our
choosing) makes a second appearance. Let r0, r1, . . ., denote the points of the path
evaluated one at time. The points r0 = 0, r1, r2 correspond to the first 3pd and suppose
rn+1, rn+2, rn+3 correspond to its second appearance, then the period of the path is n,
the translation vector τ is rn − r0 and the periodic block is r0, r1, . . ., rn−1. Theorem
3.4 assures us that the period of n of the periodic path is not greater than 24χ , where χ

is the period of the code. The next step proceeds with the test for helicity, utilizing the
step projections into the plane normal to τ , the projection of a unit step ri+1 − ri ≡ �

along the direction of τ being expressed in terms of the unit vector τ̂ ≡ τ/ |τ | as
(� · τ̂ )τ̂ ≡ �‖, so that the normal projection of � is �⊥ ≡ � − �‖. And if �⊥ and
�′⊥ are two subsequent non-zero projections, then the accompanying turn angle (for
the path projected in π⊥) is

ϑ = cos−1 {
(�⊥ · �′⊥)/(

∣
∣�⊥

∣
∣
∣
∣�′⊥

∣
∣)

}

with the sum of such turn angles checked to see if it is nonzero. The particular non-
zero multiple of 360◦ gives the number of turns per unit of translation—this might
also be called the helicity or writhe number (per translational unit) for the helix. The
sign of this number might also be said to be the sign of the helicity and chirality.
The mean pitch of the helix evidently is |τ | /n. And local pitches may be identified
as

∣
∣�‖

∣
∣ / |�⊥|. It may be noted that the regular helices (on the diamond network)

are necessarily of even period, because the translation τ must carry sites into those
which are translationally equivalent, such as must occur in the same part of the two
separate parts of the bipartite decomposition of the diamond network. For a regular
helix, given �⊥ and �′⊥( two subsequent non-zero vectors projections), the angle
between �⊥ × �′⊥ and τ is either 0◦ or 180◦, if this angle is 0◦ then the helix is right
handed otherwise it is left handed.

Example 4.1 Consider the periodic code SRSSRSSRS. . . and test if this code corre-
sponds to a helix. The periodic block for the code is SRS.

From the list we choose AbD for the first 3-path and begin at the origin. The
following shows the points and the code.

Points on the path vector �i+1 = ri+1 − ri 3pd Code
r0 0 0 0
r1 1 1 1 1 1 1 A
r2 0 2 2 −1 1 1 b
r3 −1 3 1 −1 1 −1 D S
r4 −2 2 0 −1 −1 −1 a R
r5 −1 1 −1 1 −1 −1 B S
r6 0 2 −2 1 1 −1 e S
r7 1 3 −1 1 1 1 A R
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r8 0 4 0 −1 1 1 b S
r9 −1 5 −1 −1 1 −1 D S
. . . . . . . . . . . . . . .

To find the period of the path we look for the second appearance of the first 3pd namely
AbD. From the computations we see that r7 r8 r9 correspond to the second appearance
of AbD, thus τ = r6 = (0, 2,−2) and the period is 6. Let θi,i+1 denote the turn
angle accompanying the projections of �i and �i+1. The values of turn angles can
be calculated from the formulas provided in this section: θ1,2 = θ4,5 = cos−1 (1/3),
and θ2,3 = θ3,4 = θ5,6 = θ6,7 = cos−1(

√
3/3), and these six angles add to 360◦, also

�⊥ × �′⊥ = −τ. Thus we conclude that the code SRSSRSSRS… corresponds to a
left handed helix with six points per turn, see Fig. 10. Suppose we use eBd for the first
3pd instead of AbD, then the same result is obtained but the points of the path differ
since the 3pd eBd leads to a different path. The points of the path resulting from the
choice of eBd are shown below. Also for this choice of the first 3pd we find the same
turn angles since the helix is exactly the same.

Points on the path vector �i+1 = ri+1 − ri 3pd Code
r0 0 0 0
r1 1 1 −1 1 1 −1 e
r2 2 0 −2 1 −1 −1 B
r3 3 −1 −1 1 −1 1 d S
r4 2 −2 0 −1 −1 1 E R
r5 1 −1 1 −1 1 1 b S
r6 2 0 2 1 1 1 A S
r7 3 1 1 1 1 −1 e R
r8 4 0 0 1 −1 −1 B S
r9 5 −1 1 1 −1 1 d S
… … … … …

Example 4.2 Let us consider the two paths given in the Table 2 with codes RRRRR. . .

and SSSSS. . . respectively. Ignoring the details, both are seen to be helices of period
4, with a constant turn angle 90◦. For the path with code RRRR. . ., we find that
τ = (4, 0, 0),�⊥ × �′⊥ = (2, 0, 0) and the angle between them is 0◦, thus this
path is right handed helix. Similarly, for the path with code SSSSS. . ., we find that
τ = (4, 0, 0), �⊥ × �′⊥ = (−2, 0, 0) and the angle between them is 180◦, thus it is
a left handed helix.

Example 4.3 Let us now consider the path described in Table 3.

Points on the path Vector �i+1 = ri+1 − ri 3pd Code
r0 −1 3 1
r1 0 2 0 1 −1 −1 B
r2 1 1 1 1 −1 1 d
r3 0 0 2 −1 −1 1 E R
r4 −1 1 3 −1 1 1 b S
r5 −2 2 2 −1 1 −1 D R
r6 −3 1 1 −1 −1 −1 a R
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r7 −2 0 0 1 −1 −1 B S
r8 −1 −1 1 1 −1 1 d R

We see that r7 r8 r9 correspond to the second appearance of BdE, thus τ = r6 − r0 =
(−3, 1, 1) − (−1, 3, 1) = (−2,−2, 0) and the period is 6. The turn angles for the
periodic block are θ1,2 = θ4,5 = cos−1 (1/3), and θ2,3 = θ3,4 = θ5,6 = θ6,7 =
cos−1(

√
3/3), and these six angles add to 360◦. Since �⊥ × �′⊥ = (−2,−2, 0) = τ,

the angle between �⊥ × �′⊥, τ is 0◦, the code RSRRSR. . . corresponds to a right
handed helix of period 6. Adding τ to r3 results in the r9 and adding τ to r4results in
the r10 and so on.

5 Searching for helices in the diamond network

In this section we will present an algorithm to find helices with code of period n (n ≥ 1)

in the diamond network. It may be appropriate to impose an order < on the protochirons
as S < Z < R in order to facilitate a lexicographic order on the set of all sequences
of protochirons of length n. These sequences form the periodic blocks of the code for
the infinite periodic paths. We may note that not all periodic blocks of make their first
appearance at the nth stage, if d is a divisor of n, then n/d repeats of a periodic block
of length d reappears at the nth stage. Also the “cyclic rotations” of a periodic block
result in the same infinite periodic path. Thus both types of blocks must be eliminated
since they do not create new periodic paths. In the next section we arrive at a formula
for counting the number of distinct periodic blocks of size n.

5.1 Number of essential periodic blocks of size n

A total of 3n distinct sequences are candidates as periodic blocks of size n for the
periodic code, however they do not all lead to distinct codes as mentioned earlier, while
further some excluded because of self-intersections. To count the number of essential
periodic blocks leading to distinct codes we need to eliminate the cyclic rotations of
the sequences. We use a consequence of Burnside’s Lemma to achieve this goal [13].
Let A = {1, 2, . . ., n} and B = {R, Z, S}. Let D be the set of all functions from A to
B. Let G be the cyclic group of order n acting on A. then G acts on the set of mappings
D as follows: σ ∈ G, f ∈ D, (σ ( f ))(x) = f (σ−1(x)) for all x ∈ A and σ( f ) ∈ D.
The number of orbits of G on D is exactly the number of essential periodic blocks of
size n. Letting Ck(G) denote the number of elements in G that have exactly k cycles
in their cyclic decomposition on A, the number of orbits λn is given by:

λn = 1

|G|
∞∑

k=1

Ck(G) |B|k = 1

n

n∑

k=1

Ck(G)3k .

We may note that Cn(G) = 1, for k < n, Ck(G) = 1 if k divides n, otherwise
Ck(G) = 0, and Cn(G) = ϕ(n) the Euler’s function, the number of relatively prime
positive integers less than n, thus
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λn = 1

n

⎛

⎝3ϕ(n) +
n∑

k>1,k|n
3k

⎞

⎠

For n = 1, the group is just the identity element, C1(G) = 1, there are three
sequences namely, R, Z, S.

For n = 2, ϕ(2) = 1, and λ2 = 1
2

(
3 + 32

) = 6, three of the orbits are from n = 1,
and the representatives of the three new orbits are RS, RZ, and ZS.

For n = 3, ϕ(3) = 2, and λ3 = 1
3

(
(2 × 3) + 33

) = 11, three orbits are from n = 1,
and the rest of the eight orbits are represented by SRR, SZZ, ZSS, RSS, RZZ, ZRR,
ZSR,ZRS.

For n = 4, ϕ(4) = 2, and λ4 = 1
4

(
(2 × 3) + 32 + 34

) = 24, since 1 and 2 divide
4, six of these orbits are from earlier stages, there are 18 new orbits.

5.2 Algorithm to search helices of period n in the diamond network

We start with an initial n-member sequence (S, S, S, . . ., S). The algorithm to generate
n-step periodic polymers in broad outline is as follows:

(A) From the current sequence Pcurrent generate the next sequence (c1, c2, . . . , cn)

which then is identified as Pcurrent. If the sequence is (R, R, R, . . ., R) end the
generation, and otherwise proceed to step B.

(B) Cycle the sequence Pcurrent to its lexicographic lowest form P ′, and proceed to C.
(C) Check to see if either P ′ < Pcurrent or P ′ consists of n/d repeats of an earlier

periodic block of size d for some divisor of n. If so, then return to A, and
otherwise go to the next step D.

(D) From P ′ construct the path r0, r1, r2, . . . and test for intersection, either with
itself or a later block. If it intersects return to A, and otherwise go to E.

(E) From the path of D test for helicity as explained in Sect. 4.1. If a helix, place P ′
in a list of helices, and return to step A.

Here in (B) the generation of the next sequence is lexicographically next—and is a
simple operation like turning an odometer 1 step further along. Step (C) utilizes a list
of earlier shorter sequences.

6 Conclusion

A systematic identification of different possible helices is developed from overlapping
of a small set of basic protochirons. Special focus has been directed to the structures
so realized on the tetrahedral network, though several of the ideas are more general.
A different approach to discussing molecular helices (with mathematical and biolog-
ical hints concerning helical protein chains) may be found in the scientific literature
[16–19]. For non-peptide mimetics of α-helices, a recent review was published [20].
The findings of the present communication may be useful in the context of chemicals
with helical structure: molecules and macromolecules such as inorganic compounds
(sulfur or selenium allotropes, CsSb and NaP), or organic substances (polyethylene,
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dendronized polymers, biopolymers such as proteins and DNA). From the rich liter-
ature we cite only a few references that in turn can provide an ample bibliography
[21–25].
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